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Welcome to the renaissance of computing

AI

Text generation

Video generation

Music generation

Speech generation

Sound generation

Image generation



Interacting with the world via agents

AI
User

Requests

Tools

Uses

Translations

Trip bookings

Video tutorials

Customer support

Interactive stories

And so much more!

Creates

Agent



Well… At least trying to interact with  the world …

AI
User

Requests

Tools

Uses

Hallucinations

Weird errors

Budget overflows

Incorrect information

Hard to test interactions

And so much more!

Creates

Agent

AI introduces a lot of new variables into a product creation journey



Juan Peredo - Your guide in this journey
• Founder / architect / consultant / developer & 

everything in between 


• Linkedin: linkedin.com/in/juanperedotech


• Over 15 years of IT experience in companies like:


• Bolbeck LLC


• AWS


• Strategy& (PWC)


• Booz & Co

http://linkedin.com/in/juanperedotech


A look into the trenches of App dev with agents

On the menu for today:

The good


The bad


The “what the heck is it 
doing” moments


The “wow, that is cool” 
surprises

This is my journey. Your mileage may vary.



Let’s take a quick look at the app…

It’s demo time!



Going back to basics

How it all got started…



Going back to basics



Building an AI chatbot is easy

However, validating and moderating the chatbot content is hard



There are techniques to validate LLM output
Technique Description Technique Issues

Prompt Engineering Provide directions to LLM in the 
prompt

• Need to be very precise

• LLM may choose to ignore directions

RAG Provide additional context to LLM 
as part of the prompt

• Need to add RAG store to solution

• Highly dependent on quality of data provided

• RAG may not provide enough info to get answers

Fine tuning Provide additional training to an 
LLM • Very expensive when compared to other methods


• Time consuming, could degrade LLM

Guardrails Specialized LLMs that classifies 
answer as ‘bad’

• Adds additional latency to every LLM call

• Adds cost and Is not always correct

There are no techniques that guarantee chatbot answer is ‘good’



RAG makes AI be more personal
Step 1: Data load

Step 2: Answer retrieval

Vector 
Databases

Embedding 
Models



RAG is fallible and thus the arrival of its friends

And there are so many more RAG variants! 

Simple RAG

Context Stuffing

Cache Aug. Gen.

Graph RAG

Multi-modal RAG

Hybrid RAG

Goal: 
Get more precise 

and useful 
answers



AI models increase your app complexity
Typical app dev components Typical AI app dev components



Choose your models wisely
Text Generation
• Hundreds of models available

• Performance varies widely

• Switching LLMs requires re-evaluation of prompts

Image generation
• Quality of images dependent on prompt & model

• Text to image, image to image and others

• More expensive that LLMs

Video generation

• Generation can take minutes

• Text to video, image to video and others

• More expensive than image generation

Sound generation

• Not as common or widely used

• Less models to choose from

Music generation
• Quality depends on prompt and/or original audio

• Text to Audio, audio to audio

Speech generation

• Must cleanup input text

• Performance varies widely. Newer models are great

• Trade off between speed and intonation/quality



Evaluate models & choose the best for the use case

Evaluation must take place at each step of the way

Hugging Face

OpenRouter

LangSmith

Ollama



Externalize your prompts

Prompts should not be embedded in the codebase

Externalizing prompts facilitates:


• Expert input


• Future proofing


• Faster development



Use agents to go beyond the chatbot

Agents allow LLMs to interact with the real world

Simple tool calling agent Simple assistant agent



Interacting with the world via a reAct agent

User calls agent


Agent calls main LLM


LLM use tools to perform task(s)


Agent returns result



Tools: fancy name for functions the agents can use

Tool can be as simple as a 
function that adds 2 numbers

Tools are called by LLM

Tools share info via a state



Memory can store helpful information

Use memory to help smooth out user 
interactions

Beware of storing user’s personal info


- May subject you to additional 
regulations


- Could make you a target of a 
malitious actor

Store what you need and nothing else

• User Settings 

• Personalization 

• Preferences 

• Conversation facts 

• Etc…



Take advantage of platforms to speed up agents

Platforms like LangGraph allow 
complex chaining of models & code

• Concurrent calls 

• Branching

Models are the biggest source of 
latency



Crucial: # of functions and their descriptions

LLMs decide which tools to call based on their names, parameters & descriptions

They are not always right !



Be precise on your tools metadata for better accuracy

Bad Better

def myFunction(a, b) def generate_image_for_location 
(location_name: str, image_quality: 
ImageQuality)

"""

Generate an image for a location

Args:
    location_name: name of the location
   image_quality: quality of the image to be 
generated
"""

Precise metadata improves chances of LLM doing the right thing

def generate(a: str, b: str) 



LLMs can follow directions on the metadata

class ImageQuality(Enum):
    """Quality of the image to be generated. Use low as default"""
    LOW = "low"
    MEDIUM = "medium"
    HIGH = "high"
    EXTREME = "extreme"

Note the default quality to be used by LLM



When something goes wrong, LLMs go off the rails

Always check how many steps 
it takes to solve users’ request

If a tool fails, LLM will try to call all other tools 
to fix the issue using brute force

Set the maximum number of 
iterations  per call for the agent



  Assumptions:

Be aware of the cost when running agents

Simple tool calling agent

3,000 
Calls / day

15 
Tool calls / request

$15 / 1M  
Tokens in

$60 / 1M  
Tokens out

1,500 Input tokens 
3,000 Output tokens

Pricing source: OpenAI API pricing webpage as of Mar 31st, 2025

Call Center example: Agent that uses OpenAI o1 as the LLM



Costs can add up quickly

Example call center agent using OpenAI o1 as the LLM

• 16 o1 calls (1per tool call + initial call) 
• 0.000015 *1500 Input token cost 
• 0.00006 * 3000 Output token cost 
• (16 *(0.000015 *1500 + 0.00006 * 3000)) = $ 3.24

$ 291,600 
per month

$ 3.24 
Per call

$ 9,270 
Per day

3.24 * 3000 calls/day =  $ 9,720 9,270 $/day * 30 days =  $ 9,720



Choice of model  and provider has a big impact

Small is beautiful and better for the 
environment  (not to mention your wallet)

Charts source: Artificial Analysis, Feb 2025

Pricese are represented as a blend of token prices (3:1 ratio)

https://artificialanalysis.ai


The right tools for the job can minimize cost

Example call center agent using Llama 3.3 70B as the LLM running on Groq

• 16 o1 calls (1per tool call + initial call) 
• 0.00000059 *1500 Input token cost 
• 0.00000079 * 3000 Output token cost 
• (16 *(0.00000059 *1500 + 0.00000079 * 3000)) = $ 0.052

$ 4,680 
per month

$ 0.052 
Per call

$ 1,56 
Per day

0.052 * 3000 calls/day =  $ 156 156 $/day * 30 days =  $ 4,680

Pricing source: Groq API pricing webpage as of Mar 31st, 2025



The right tools for the job can minimize cost

Llama 3.1 8B, Llama 3.3 70B, OpenAI o1

$ 291,600 
per month

$ 453 
Per month

$ 4,680 
Per month

Pricing source: Groq API and Open AI pricing webpages as of Mar 1st, 2025 
Open AI o1: $15 in & 60 out per 1M , Llama 3.3 70B: $0.59 in & 0.79 out per 1M  , Llama 3.1 8B: $0.05 in & 0.08 out per 1M



Remember to keep your LLM protected at all times

Having a chatbot as your input source increases the potential attack vectors to 
your data

Treat LLMs inputs and outputs just as potential bad actors trying to access 
your data



Increase Agent success rate with a classifier

Reduce the number of tools needed by your LLM at any one point

Break up the task into smaller problems by putting a classifier in front of your 
agent. Have the classifier direct requests to different agent nodes instead of 
overloading your agent with too many tools



Stop tool calling rampage by escaping the loop

Build an escape clause into the LLM tool calling loop If your app throws an 
error, ensure the LLM is not called again. Just report error to the user 
directly

Stops sticker shock and makes the app more user friendly



Make sure you have fallbacks

LLM endpoints are pretty robust, but not infallible

What do you do when a provider goes down?



Each Agent call can result in a dozen of LLM calls

Each LLM call comes with an additional cost

Hard to come up with an appropriate pricing structure

When using LLM endpoints, each user added to app increases the 
cost linearly. Economies of scale do not apply.

When renting GPUs, the cost of each additional GPU is pretty high and 
GPUs are hard to come by



Sometimes it is better to run agentic workflows

No need for an orchestrating LLM to decide which tool to call when 
the task path is pre-determined

Can still use LLMs to perform the work

Be nice to your wallet



Use agents and LLMs only when you need them

GPUs are really 
expensive and hard to 
optimize for multi 
tenancy

AI APIs providers are 
convenient and efficient 
but cost is linear per 
user

Always keep an eye on your wallet and budget



Get proper observability for your Agents

Tracing model output, specially with agents, is hard without the necessary tooling

Agent run traces in LangSmith



Questions ?

Juan Peredo
linkedin.com/in/juanperedotech

? ? ?

http://linkedin.com/in/juanperedotech

