
Navigating the New Frontier
Lessons from Building and Deploying Agentic AI Apps

April 3rd, 2025

Juan Peredo

Welcome to the renaissance of computing

AI

Text generation

Video generation

Music generation

Speech generation

Sound generation

Image generation

Interacting with the world via agents

AI
User

Requests

Tools

Uses

Translations

Trip bookings

Video tutorials

Customer support

Interactive stories

And so much more!

Creates

Agent

Well… At least trying to interact with the world …

AI
User

Requests

Tools

Uses

Hallucinations

Weird errors

Budget overflows

Incorrect information

Hard to test interactions

And so much more!

Creates

Agent

AI introduces a lot of new variables into a product creation journey

Juan Peredo - Your guide in this journey
• Founder / architect / consultant / developer &

everything in between

• Linkedin: linkedin.com/in/juanperedotech

• Over 15 years of IT experience in companies like:

• Bolbeck LLC

• AWS

• Strategy& (PWC)

• Booz & Co

http://linkedin.com/in/juanperedotech

A look into the trenches of App dev with agents

On the menu for today:

The good

The bad

The “what the heck is it
doing” moments

The “wow, that is cool”
surprises

This is my journey. Your mileage may vary.

Let’s take a quick look at the app…

It’s demo time!

Going back to basics

How it all got started…

Going back to basics

Building an AI chatbot is easy

However, validating and moderating the chatbot content is hard

There are techniques to validate LLM output
Technique Description Technique Issues

Prompt Engineering Provide directions to LLM in the
prompt

• Need to be very precise

• LLM may choose to ignore directions

RAG Provide additional context to LLM
as part of the prompt

• Need to add RAG store to solution

• Highly dependent on quality of data provided

• RAG may not provide enough info to get answers

Fine tuning Provide additional training to an
LLM • Very expensive when compared to other methods

• Time consuming, could degrade LLM

Guardrails Specialized LLMs that classifies
answer as ‘bad’

• Adds additional latency to every LLM call

• Adds cost and Is not always correct

There are no techniques that guarantee chatbot answer is ‘good’

RAG makes AI be more personal
Step 1: Data load

Step 2: Answer retrieval

Vector
Databases

Embedding
Models

RAG is fallible and thus the arrival of its friends

And there are so many more RAG variants!

Simple RAG

Context Stuffing

Cache Aug. Gen.

Graph RAG

Multi-modal RAG

Hybrid RAG

Goal:
Get more precise

and useful
answers

AI models increase your app complexity
Typical app dev components Typical AI app dev components

Choose your models wisely
Text Generation
• Hundreds of models available

• Performance varies widely

• Switching LLMs requires re-evaluation of prompts

Image generation
• Quality of images dependent on prompt & model

• Text to image, image to image and others

• More expensive that LLMs

Video generation

• Generation can take minutes

• Text to video, image to video and others

• More expensive than image generation

Sound generation

• Not as common or widely used

• Less models to choose from

Music generation
• Quality depends on prompt and/or original audio

• Text to Audio, audio to audio

Speech generation

• Must cleanup input text

• Performance varies widely. Newer models are great

• Trade off between speed and intonation/quality

Evaluate models & choose the best for the use case

Evaluation must take place at each step of the way

Hugging Face

OpenRouter

LangSmith

Ollama

Externalize your prompts

Prompts should not be embedded in the codebase

Externalizing prompts facilitates:

• Expert input

• Future proofing

• Faster development

Use agents to go beyond the chatbot

Agents allow LLMs to interact with the real world

Simple tool calling agent Simple assistant agent

Interacting with the world via a reAct agent

User calls agent

Agent calls main LLM

LLM use tools to perform task(s)

Agent returns result

Tools: fancy name for functions the agents can use

Tool can be as simple as a
function that adds 2 numbers

Tools are called by LLM

Tools share info via a state

Memory can store helpful information

Use memory to help smooth out user
interactions

Beware of storing user’s personal info

- May subject you to additional
regulations

- Could make you a target of a
malitious actor

Store what you need and nothing else

• User Settings

• Personalization

• Preferences

• Conversation facts

• Etc…

Take advantage of platforms to speed up agents

Platforms like LangGraph allow
complex chaining of models & code

• Concurrent calls

• Branching

Models are the biggest source of
latency

Crucial: # of functions and their descriptions

LLMs decide which tools to call based on their names, parameters & descriptions

They are not always right !

Be precise on your tools metadata for better accuracy

Bad Better

def myFunction(a, b) def generate_image_for_location
(location_name: str, image_quality:
ImageQuality)

"""

Generate an image for a location

Args:
 location_name: name of the location
 image_quality: quality of the image to be
generated
"""

Precise metadata improves chances of LLM doing the right thing

def generate(a: str, b: str)

LLMs can follow directions on the metadata

class ImageQuality(Enum):
 """Quality of the image to be generated. Use low as default"""
 LOW = "low"
 MEDIUM = "medium"
 HIGH = "high"
 EXTREME = "extreme"

Note the default quality to be used by LLM

When something goes wrong, LLMs go off the rails

Always check how many steps
it takes to solve users’ request

If a tool fails, LLM will try to call all other tools
to fix the issue using brute force

Set the maximum number of
iterations per call for the agent

 Assumptions:

Be aware of the cost when running agents

Simple tool calling agent

3,000
Calls / day

15
Tool calls / request

$15 / 1M
Tokens in

$60 / 1M
Tokens out

1,500 Input tokens
3,000 Output tokens

Pricing source: OpenAI API pricing webpage as of Mar 31st, 2025

Call Center example: Agent that uses OpenAI o1 as the LLM

Costs can add up quickly

Example call center agent using OpenAI o1 as the LLM

• 16 o1 calls (1per tool call + initial call)
• 0.000015 *1500 Input token cost
• 0.00006 * 3000 Output token cost
• (16 *(0.000015 *1500 + 0.00006 * 3000)) = $ 3.24

$ 291,600
per month

$ 3.24
Per call

$ 9,270
Per day

3.24 * 3000 calls/day = $ 9,720 9,270 $/day * 30 days = $ 9,720

Choice of model and provider has a big impact

Small is beautiful and better for the
environment (not to mention your wallet)

Charts source: Artificial Analysis, Feb 2025

Pricese are represented as a blend of token prices (3:1 ratio)

https://artificialanalysis.ai

The right tools for the job can minimize cost

Example call center agent using Llama 3.3 70B as the LLM running on Groq

• 16 o1 calls (1per tool call + initial call)
• 0.00000059 *1500 Input token cost
• 0.00000079 * 3000 Output token cost
• (16 *(0.00000059 *1500 + 0.00000079 * 3000)) = $ 0.052

$ 4,680
per month

$ 0.052
Per call

$ 1,56
Per day

0.052 * 3000 calls/day = $ 156 156 $/day * 30 days = $ 4,680

Pricing source: Groq API pricing webpage as of Mar 31st, 2025

The right tools for the job can minimize cost

Llama 3.1 8B, Llama 3.3 70B, OpenAI o1

$ 291,600
per month

$ 453
Per month

$ 4,680
Per month

Pricing source: Groq API and Open AI pricing webpages as of Mar 1st, 2025
Open AI o1: $15 in & 60 out per 1M , Llama 3.3 70B: $0.59 in & 0.79 out per 1M , Llama 3.1 8B: $0.05 in & 0.08 out per 1M

Remember to keep your LLM protected at all times

Having a chatbot as your input source increases the potential attack vectors to
your data

Treat LLMs inputs and outputs just as potential bad actors trying to access
your data

Increase Agent success rate with a classifier

Reduce the number of tools needed by your LLM at any one point

Break up the task into smaller problems by putting a classifier in front of your
agent. Have the classifier direct requests to different agent nodes instead of
overloading your agent with too many tools

Stop tool calling rampage by escaping the loop

Build an escape clause into the LLM tool calling loop If your app throws an
error, ensure the LLM is not called again. Just report error to the user
directly

Stops sticker shock and makes the app more user friendly

Make sure you have fallbacks

LLM endpoints are pretty robust, but not infallible

What do you do when a provider goes down?

Each Agent call can result in a dozen of LLM calls

Each LLM call comes with an additional cost

Hard to come up with an appropriate pricing structure

When using LLM endpoints, each user added to app increases the
cost linearly. Economies of scale do not apply.

When renting GPUs, the cost of each additional GPU is pretty high and
GPUs are hard to come by

Sometimes it is better to run agentic workflows

No need for an orchestrating LLM to decide which tool to call when
the task path is pre-determined

Can still use LLMs to perform the work

Be nice to your wallet

Use agents and LLMs only when you need them

GPUs are really
expensive and hard to
optimize for multi
tenancy

AI APIs providers are
convenient and efficient
but cost is linear per
user

Always keep an eye on your wallet and budget

Get proper observability for your Agents

Tracing model output, specially with agents, is hard without the necessary tooling

Agent run traces in LangSmith

Questions ?

Juan Peredo
linkedin.com/in/juanperedotech

? ? ?

http://linkedin.com/in/juanperedotech

